skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Girard, Marianne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT In this paper, we use Hubble Space Telescope/WFC3 observations of six galaxies from the DYnamics of Newly Assembled Massive Object (DYNAMO) survey, combined with stellar population modelling of the SED, to determine the stellar masses of DYNAMO clumps. The DYNAMO sample has been shown to have properties similar to z ≈ 1.5 turbulent, clumpy discs. DYNAMO sample clump masses offer a useful comparison for studies of z > 1 in that the galaxies have the same properties, yet the observational biases are significantly different. Using DYNAMO, we can more easily probe rest-frame near-IR wavelengths and also probe finer spatial scales. We find that the stellar mass of DYNAMO clumps is typically 107−108M⊙. We employ a technique that makes non-parametric corrections in removal of light from nearby clumps, and carries out a locally determined disc subtraction. The process of disc subtraction is the dominant effect, and can alter clump masses at the 0.3 dex level. Using these masses, we investigate the stellar mass function (MF) of clumps in DYNAMO galaxies. DYNAMO stellar MFs follow a declining power law with slope α ≈ −1.4, which is slightly shallower than, but similar to what is observed in z > 1 lensed galaxies. We compare DYNAMO clump masses to results of simulations. The masses and galactocentric position of clumps in DYNAMO galaxies are more similar to long-lived clumps in simulations. Similar to recent DYNAMO results on the stellar population gradients, these results are consistent with simulations that do not employ strong ‘early’ radiative feedback prescriptions. 
    more » « less
  2. ABSTRACT We study star formation-driven outflows in a z ∼ 0.02 starbursting disc galaxy, IRAS08339+6517, using spatially resolved measurements from the Keck Cosmic Web Imager (KCWI). We develop a new method incorporating a multistep process to determine whether an outflow should be fit in each spaxel, and then subsequently decompose the emission line into multiple components. We detect outflows ranging in velocity, vout, from 100 to 600 km s−1 across a range of star formation rate surface densities, ΣSFR, from ∼0.01 to 10 M⊙ yr−1 kpc−2 in resolution elements of a few hundred parsec. Outflows are detected in ∼100 per cent of all spaxels within the half-light radius, and ∼70 per cent within r90, suggestive of a high covering fraction for this starbursting disc galaxy. Around 2/3 of the total outflowing mass originates from the star forming ring, which corresponds to $${\lt}10{{\ \rm per\ cent}}$$ of the total area of the galaxy. We find that the relationship between vout and the ΣSFR, as well as between the mass loading factor, η, and the ΣSFR, are consistent with trends expected from energy-driven feedback models. We study the resolution effects on this relationship and find stronger correlations above a re-binned size-scale of ∼500 pc. Conversely, we do not find statistically significant consistency with the prediction from momentum-driven winds. 
    more » « less